[TECHNICAL DATA] STRENGTH OF BOLTS, SCREW PLUGS, AND DOWEL PINS

[TECHNICAL DATA] CALCULATION OF CUBIC VOLUME AND MATERIAL PHYSICAL PROPERTIES

■Bolt strength

1) When bolt is subjected to tensile load

Pt=
$$\sigma$$
t×As····· (1)
= π d² σ t/4··· (2)

Pt : Tensile load in axial direction [kgf] σ b: Bolt yield stress [kgf/mm²]

 σ t : Bolt maximum allowable stress [kgf/mm²]

 $(\sigma t = \sigma b)/(\text{safety factor } \alpha))$ As : Bolt effective cross-section area [mm²] As = $\pi d^2/4$

d : Bolt effective diameter (root diameter) [mm]

 \blacksquare Unwin safety factor α based on tensile strength

Static load	Repeated load		Impact
	Pulsating	Alternating	load
3	5	8	12
4	6	10	15
5	5	9	15
	load 3 4	load Pulsating 3 5 4 6	load Pulsating Alternating 3 5 8 4 6 10

 $\label{eq:Shear Stress} Shear stress = \frac{Standard strength}{Safety factor_{\alpha}} \begin{array}{c} Standard strength: For ductile materials = Yield stress \\ For brittle materials = Fracture stress \\ \end{array}$

Example: Find a suitable size for a single hexagon socket head cap screw that will be subjected to repeated (pulsating) tensile loads of P=200 kgf. (Hexagon socket head cap screw material: 4137, 38 \sim 43 HRC, strength class 12.9)

From formula (1):

$$As=Pt/\sigma t$$

 $=200/22.4$
 $=8.9 [mm^2]$

∴ Finding the effective cross-section area larger than this value from the table at right shows that a 14.2 [mm²] M5 cap screw should be selected.

With additional consideration for the fatigue strength, and based on the strength class of 12.9 in the table, we select an M6 screw with maximum allowable load of 213 kgf.

2) For stripper bolts and others which are subjected to tensile impact loads, the selection is made based on the fatigue strength. (The bolt is subjected to 200 kgf loads in the same way. Stripper bolt material: 4137 33~38 HRC, strength class 10.9.)

From the table at right, for a strength class of 10.9 and a maximum allowable load of 200 kgf, the suitable bolt is a 318[kgf]M8. Therefore we select a 10 mm MSB10 with a M8 thread section. When the bolt is subjected to shear load, also use a dowel pin.

Screw plug strength

Find the maximum allowable load P when a MSW30 screw plug is subjected to impact load. (MSW30 material: 1045, tensile strength σ b at 34 \sim 43 HRC 65 kgf/mm²)

Assuming fracture due to shear occurs at the MSW root diameter location, the maximum allowable load $P = \tau t \times A$.
=3.9×107.4

When the tap is a soft materia find the maximum allowable shear from the inside thread root diameter

=4190[kgf]

ar eter	Shear cross-section area A=Root diameter $d_1 \times \pi \times L$
ıble	(Root diameter d1≒M−P)
	$A = (M-P) \pi L = (30-1.5) \pi \times 12$
	$=1074[mm^2]$
	Yield stress \Rightarrow 0.9×Tensile strength σ b=0.9×65=58.2
	Shear stress≒0.8×Yield stress
	=46.6
ıls,	Maximum allowable shear stress τ t=Shear stress / (Safety factor 12)
	$=46.6/12=3.9[kgf/mm^2]$

Yield stress for strength class $12.9 \sigma b = 112 [kgf/mm^2]$ Maximum allowable stress $\sigma t = \sigma b/(safety factor)$ (From table above, safety factor=5) = 112/5= $22.4 [kgf/mm^2]$

■ Bolt fatigue strength(For threads: fatigue strength = count of 2 million)

	Strength class			
cross-section area As mm²	12.9		10.9	
	Fatigue strength*	Maximum allowable load	Fatigue strength*	Maximum allowable load
	kgf/mm²	kgf	kgf/mm²	kgf
8.78	13.1	114	9.1	79
14.2	11.3	160	7.8	111
20.1	10.6	213	7.4	149
36.6	8.9	326	8.7	318
58	7.4	429	7.3	423
84.3	6.7	565	6.5	548
115	6.1	702	6	690
157	5.8	911	5.7	895
245	5.2	1274	5.1	1250
353	4.7	1659	4.7	1659
	area As mm² 8.78 14.2 20.1 36.6 58 84.3 115 157 245	cross-section area area As mm² 12 Faitipus strength* kgf/mm² 8.78 13.1 14.2 111.3 20.1 10.6 36.6 8.9 58 7.4 84.3 6.7 115 6.1 157 5.8 245 5.2	12.9 Razimum Razimum	12.9 10 10 10 10 10 10 10 1

Fatigue strengths* have been excerpted from "Estimated values of fatigue limits for metal threads of small screws, bolts, and nuts" (Yamamoto) and modified.

■Dowel pin strength

Find a suitable size for a single dowel pin which is subjected to repeated (pulsating) shear loads of 800 kgf. (Dowel pin material: 52100 hardness 58 HRC or higher)

P=A ×
$$\tau$$

= π D² τ /4
D= $\sqrt{(4P)/(\pi \tau)}$
= $\sqrt{(4\times800)/(3.14\times19.2)}$
= 7.3

52100 yield stress capability σ b=120[kgf/mm²] Maximum allowable shear strength $\tau = \sigma$ b×0.8/(Safety factor α) =120×0.8/5 =19.2[kgf/mm²]

·· For an MS dowel pin, select a size of D8 or larger.
In addition, selecting a single size for all dowel pins makes it possible to reduce items such as tools and inventory.

Do not use in such a way that load is applied to the threads

The information provided here is only an example of calculating the strength. For actual selections, it is necessary to consider the hole pitch accuracy, hole perpendicularity, surface roughness, true roundness, plate material, parallelism, use of hardening, accuracy of the press machine, product production volume, tool wear, and various other conditions. Therefore the strength calculation value should be used only as a guide. (It is not a guaranteed value.)

3D shape	Volume V
Zone of sphere	$V = \frac{\pi h}{6} (3a^2 + 3b^2 + h^2)$
Barrel shape	When curve has circumference that is an arc: $V = \frac{\pi\ell}{12}(2D^2 + d^2)$ When curve has circumference that is a parabola $V = 0.209\ell(2D^2Dd + 1/4d^2)$

Finding the weight

Weight W[g]=Volume[cm³]×Density

■Physical properties of metal materials

M	Density [g/cm ³]	Young's modulus E [kgf/mm²]	Coefficient of thermal expansion [M10 ⁻⁶ /°C]
Soft steel	7.85	21000	11.7
D2	7.85	21000	11.7
Powdered high-speed steel (HAP40)	8.07	23300	10.1
Carbide V30	14.1	56000	6.0
Cast iron	7.3	7500 ~ 10500	9.2 ~ 11.8
304	8.0	19700	17.3
Oxygen-free copper C1020	8.9	11700	17.6
6/4 brass C2801	8.4	10300	20.8
Aluminum A1100	2.7	6900	23.6
Duralumin A7075	2.8	7200	23.6
Titanium	4.5	10600	8.4

1kgf/mm² =9.80665×10⁶ Pa

Finding dimensional changes resulting from thermal expansion

Example: Material: D2

Example: The amount of dimensional change δ which occurs when a pin of D= ϕ 2, L=100 mm is heated to 100°C is the following.

8 = Coefficient of thermal expansion × Total length × Temperature change =11.7×10⁻⁶×100 mm×100°C =0.117 mm]

Finding dimensional changes resulting from Young's modulus E Example: Find strain λ when load P=1000 kgf is applied

